Penyelesaianpersamaan trigonometri dalam bentuk derajat yang berada pada rentang 0∘ sampai dengan 360∘ atau dalam bentuk radian yang berada pada rentang 0 sampai dengan 2π. Tentukan himpunan penyelesaian dari persamaan sin 2 x - 2 sin x - 3 = 0 untuk 0 o ≤ x ≤ 360 o .. A. HP = {-90 o,270 o} B. HP = {-90 o,270 o, 630 o}
Contoh soal dan pembahasan menyelesaikan persamaan trigonometri, menentukan himpunan penyelesaian materi matematika kelas 10, 11 SMA. Tengok dulu 3 kelompok rumus penyelesaian persamaan trigonometri berikut. Masing-masing untuk sinus, cosinus dan untuk tangen Rumus Penyelesaian Persamaan Trigonometri Untuk sinus Untuk kosinus Untuk tangen k diisi nilai 0, 1, 2, 3 dan seterusnya. Contoh Soal No. 1 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari sin x = 1/2 Pembahasan Dari sin x = 1/2 Untuk harga awal, sudut yang nilai sin nya 1/2 adalah 30°. Sehingga sin x = 1/2 sin x = sin 30° Dengan pola rumus yang pertama di atas i x = 30 + k ⋅ 360 k = 0 → x = 30 + 0 = 30 ° k = 1 → x = 30 + 360 = 390 ° ii x = 180 − 30 + k⋅360 x = 120 + k⋅360 x = 150 + k⋅360 k = 0 → x = 150 + 0 = 150 ° k = 1 → x = 150 + 360 = 510 ° Dari penggabungan hasil i dan hasil ii, dengan batas permintaan 0° ≤ x ≤ 360°, yang diambil sebagai himpunan penyelesaiannya adalah HP = {30°, 150°} Soal No. 2 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 Pembahasan 1/2 adalah nilai cosinus dari 60°. Sehingga cos x = cos 60° i x = 60° + k ⋅ 360° k = 0 → x = 60 + 0 = 60 ° k = 1 → x = 60 + 360 = 420° ii x = −60° + k⋅360 x = −60 + k⋅360 k = 0 → x = −60 + 0 = −60° k = 1 → x = −60 + 360° = 300° Himpunan penyelesaian yang diambil adalah HP = {60°, 300°} Soal No. 3 Untuk 0° ≤ x ≤ 720° tentukan himpunan penyelesaian dari sin x − 30 = 1/2 √3 Pembahasan 1/2 √3 miliknya sin 60° Sehingga sin x − 30 = sin 60° dan Untuk 0° ≤ x ≤ 720°, HP = {90°, 150°, 450°, 510°} Soal No. 4 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x − 30° = 1/2 √2 Pembahasan Harga awal untuk 1/2 √2 adalah 45° HP = {75°, 345°} Soal No. 5 Himpunan penyelesaian persamaan cos 2x + sin x = 0 untuk 0 < x ≤ 2π adalah….. A. {π/2, 4π/3, 5π/3} B. {π/2, 7π/6, 4π/3} C. {π/2, 7π/6, 5π/3} D. {π/2, 7π/6, 11π/6} E. {π/2, 5π/3, 11π/6} Pembahasan Dari rumus sudut rangkap dari pelajaran sebelumnya cos 2x = cos2 x − sin2x cos 2x = 2 cos2 x − 1 cos 2x = 1 − 2 sin2 x cos 2x + sin x = 0 1 − 2 sin2 x + sin x = 0 − 2 sin2 x + sin x + 1 = 0 2 sin2 x − sin x − 1 = 0 Faktorkan 2sin x + 1sin x − 1 = 0 2sin x + 1 = 0 2sin x = −1 sin x = −1/2 x = 210° dan x = 330° atau sin x − 1 = 0 sin x = 1 x = 90° Sehingga HP = {90°, 210°, 330°} dalam satuan derajat. HP = {π/2, 7π/6, 11π/6} dalam satuan radian. Jawaban D. Soal No. 6 Himpunan penyelesaian persamaan cos 2x + 5 sin x + 2 = 0 untuk 0 ≤ x ≤ 2π adalah… A. {2π/3,4π/3} B. {4π/3, 5π/3} C. {5π/6, 7π/6} D. {5π/6, 11π/6} E. {7π/6, 11π/6} Pembahasan Persamaan trigonometri Misalkan sin x sebagai P dan juga cos 2x = 1 − 2sin2 x Soal No. 7 Himpunan penyelesaian persamaan 2cos 2x − 3 cos x + 1 = 0 untuk 0 < x < 2π adalah… A. {π/6, 5π/6} B. {π/6, 11π/6} C. {π/3, 2π/3} D. {π/3, 5π/3} E. {2π/3, 4π/3} Pembahasan 2cos 2x − 3 cos x + 1 = 0 Faktorkan 2cos x − 1cos x − 1 = 0 2cos x − 1 = 0 2cos x = 1 cos x = 1/2 x = 60° = π/3 dan x = 300° = 5π/3 atau cos x − 1 = 0 cos x = 1 x = 0° dan x = 360° = 2π Tidak diambil, karena diminta 0 < x < 2π Jadi HP = {π/3, 5π/3} Jawaban D Soal No. 8 Himpunan penyelesaian dari persamaan cos 4x + 3 sin 2x = −1 untuk 0° ≤ x ≤ 180° adalah… A. {150°,165°} B. {120°,150°} C. {105°,165°} D. {30°,165°} E. 15°,105° Pembahasan Ubah ke bentuk sin semua, dengan rumus sudut rangkap, kemudian faktorkan cos 4x + 3 sin 2x = −1 Untuk faktor Tidak Memenuhi, lanjut ke faktor Diperoleh Jadi HP = {105°,165°} Soal No. 9 Himpunan penyelesaian dari 2 sin2 x − 3 sin x + 1 = 0 dengan 0° ≤ x ≤ 360° adalah…. A. {30°, 90°, 150°} B. {30°, 120°, 240°} C. {30°, 120°, 300°} D. {30°, 150°, 270°} E. {60°, 120°, 270°} UN Matematika SMA IPA 2014 Pembahasan Soal ini akan coba diselesaikan dengan cara coba-coba. Ambil salah satu sudut dari pilihan jawaban yang ada, untuk mengeliminir pilihan lainnya. Dari yang mudah yaitu 30° atau 90°. Nilai sin 30° adalah 1/2, jika sudut ini termasuk jawaban maka akan sama dengan nol seperti permintaan soal. Persamaan di soal 2 sin2 x − 3 sin x + 1 = ? 30° → 2 sin2 30° − 3 sin 30° + 1 = ? = 2 1/22 − 3 1/2 + 1 = 0 Benar, jadi jawaban harus memuat angka 30°, pilihan E salah karena tidak memuat 30 derajad. Berikutnya coba 90°, tentunya sudah tahu sin 90° = 1 2 sin2 x − 3 sin x + 1 = ? 90° → 2 sin2 90° − 3 sin 90° + 1 = ? = 2 12 − 3 1 + 1 = 2 − 3 + 1 = 0 Benar, Jawaban harus memuat 90° jadi B, C, D, dan E salah, A dipastikan benar tanpa dilakukan pengecekan pada 150°, tentunya kalau soalnya ndak error Soal No. 10 Himpunan penyelesaian persamaan cos 2x − 2 sin x = 1; 0 ≤ x < 2π adalah…. A. {0, π, 3π/2, 2π} B. {0, π, 4π/3, 2π} C. {0, 2π/3; π, 2π} D. {0, π, 2π} E. {0, π, 3π/2} Pembahasan Soal ini lebih mudah lagi, syaratnya adalah 0 ≤ x < 2π , maka x tidak boleh memuat 2π, karena tandanya adalah lebih kecil dari 2π bukan lebih kecil atau sama dengan. Jadi pilihan yang ada 2π nya salah, hanya E yang tidak memuat 2π. Jadi jawabnya yang E, soal di atas dari soal UN, namun soal seperti ini jarang-jarang ada.
Jadi himpunan penyelesaian persamaan trigonometri di atas untuk interval 0 ≤ x ≤ 360 adalah (30, 330) Nah, jika ada soal tentang mencari penyelesaian persamaan trigonometri 2 Cos, kamu sudah paham kan cara menjawabnya? Ikuti saja langkah-langkah yang telah kami paparkan di atas. Sekian dulu materi kali ini, bagikan kepada temanmu yang
Jakarta - Persamaan trigonometri menjadi salah satu materi dalam pelajaran matematika. Agar lebih memahami, ada contoh soal persamaan trigonometri yang bisa dipelajari di trigonometri memiliki tiga rumus dasar yang wajib diketahui sebagai berikutContoh Soal Persamaan Trigonometri Foto ScreenshootSelain itu, persamaan trigonometri berbentuk a cos x + b sin x = c, dapat diselesaikan dengan terlebih dahulu mengubah persamaan tersebut menjadia cos x + b sin x = c Leftrightarrow k cos x -α =cdengan k = q² + b² dan tan α = frac{a}{b} Syaratnya c² ≤ a² + b²Contoh Soal Persamaan Trigonometri dilansir buku 'Bahas Total Kumpulan Soal Super Lengkap Matematika SMA' karya Supadi1. SoalContoh soal persamaan trigonometri Foto Screenshoot2. Dikutip dari buku ' xxx' berikut contoh soal persamaan trigonometriNilai x di antara 0° dan 360° yang memenuhi persamaan √3 cos x + sin x = √2 adalah...Jawaban√3 cos x + sin x = √21/2√3 cos x + 1/2 sin x = 1/2 √2cos 30° cos x + sin 30° sin x = cos 45°cos x-30° = cos 45', makax-30° = ± 45° + k . 360°x1 -30° = 45° + k . 360° ataux1 = 75° + k . 360°supaya x1 terletak di antara 0° dan 360° makax1 = 75° + 0 . 360° = 75°x2 - 30° = -45° + k . 360°atau x2 = 15° + k. 360°ambil k = 1, x2 = -15° + 1 x 360° = 345°3. Contoh soal persamaan trigonometri cos 2x° - cos x° - 2 = 00≤ x < 360Jawabancos 2x° - cos x° - 2 = 0Leftrightarrow 2 cos² x - 1 - cos x° - 2 = 0Leftrightarrow 2 cos² x° - cos x° - 3 = 0Leftrightarrow 2 cos x° - 3 cos x° + 1 = 0Leftrightarrow cos x = 2/3 tidak mungkin atau cos x°= -1= cos 180°x=180°Selamat belajar contoh soal persaman trigonometri, detikers! Simak Video "Ini Nono, Siswa SD NTT yang Menang Lomba Matematika Tingkat Dunia" [GambasVideo 20detik] pay/pal
Pembahasansoal-soal Ujian Nasional (UN) bidang studi Matematika SMA-IPA dengan materi pembahasan Persamaan Trigonometri yang meliputi nilai x dan himpunan penyelesaian dalam interval 0° ≤ x ≤ 180° dan 0° ≤ x ≤ 360°. Untuk menyelesaikan soal-soal persamaan trigonometri, modal yang harus diingat kembali adalah hafalan sudut-sudut
Dasar trigonometri diantaranya yaitu berupa konsep kesebangunan dari bagunan segitiga siku-siku. Sisi-sisi yang bersesuaian dengan dua bangun datar yang sebangun ini mempunyai perbandingan yang bisa dikatakan sama. Segitiga yang dikatakan sebangun itu, pada geometri Euclid, apabila masing-masing dari sudut dua segitiga tersebut mempunyai besar sudut yang sama, maka kedua segitiga itu bisa dipastikan segitiga sebangun. Hal tersebut merupakan sebuah dasar di dalam melakukan perbandingan trigonometri dari sudut lancip. Konsep tersebut selanjutnya dikembangkan lagi untuk sudut-sudut tumpul yang mana lebih dari 90 derajat dan atau kurang dari nol derajat. Dan untuk salah satu pembahasan yang ada pada materi trigonometri yaitu menyelesaikan persamaan trigonometri. Pada umumnya, soal yang diberikan di dalam persamaan trigonometri yaitu untuk menentukan himpunan dari penyelesaian yang terdiri dari sudut-sudut yang memenuhi dari persamaan trigonometri. Sebagaimana yang telah anda ketahui, jika untuk bentuk grafik fungsi trigonometri ini sifatnya bisa dikatakan periodik. Bentuknya juga akan berulang sama di dalam rentang tertentu. Dengan demikian, untuk nilai fungsi trigonometri dari sebuah persamaan ini tidak hanya mempunyai nilai tunggal. Persamaan trigonometri merupakan persamaan yang mana didalamnya memuat perbandingan dari trigonometri. Persamaan trigonometri ini juga terbagi di dalam dua bentuk, antara lain yaitu berbentuk kalimat terbuka dan juga berbentuk identitas. Untuk menyelesaikan persamaan trigonometri pada kalimat terbuka, dan itu artinya menentukan nilai variabel yang ada pada persamaan tersebut. Dengan demikian, untuk persamaan itu bisa menjadi benar. Perlu anda ketahui, jika ada tiga jenis rumus perioda yang bisa anda gunakan dalam menyelesaikan persamaan trigonometri bentuk ini, diantaranya seperti berikut ini 1 Apabila sin x = sin α maka x = α + kemudian x = 180 – α + 2 Jika cos x = cos α maka x = α + dan x = – α + 3 Jika tan x = tan α maka x = α + Yang mana k merupakan bilangan bulat Bentuk Persamaan Trigonometri Fungsi Sinus Grafik fungsi sinus ini memiliki sifat periodik, membentuk bukit dan juga lembah. Oleh sebab itu, untuk nilai fungsi sinus untuk satu besar sudut ini akan sama dengan nilai dari fungsi sinus untuk yang besar sudut lain. Bentuk Persamaan Trigonometri Fungsi Cosinus Hal yang harus anda ketahui selanjutnya yaitu menyelesaikan masalah persamaan trigonometri untuk fungsi cosinus. Grafik fungsi cosinus ini juga bersifat periodik, membentuk bukit dan lembah. Bedanya hanya terletak pada awal mulainya. Di dalam satu periode pada fungsi sinus dasar y = sin x dimulai dari 0 nol dan kembali ke 0 nol. Kemudian, pada satu periode fungsi cosinus dasar y = Cos x ini dimulai dari 1 satu dan kembali ke 1 satu. Untuk nilai tertinggi fungsi y = Cosx yaitu 1 dan nilai terendahnya yaitu -1. Nilai fungsi cosinus untuk satu besar sudut itu akan sama dengan nilai fungsi cosinus yang untuk besar sudut yang lainnya. Bentuk Persamaan Trigonometri Fungsi Tangen Grafik fungsi tangen ini lain halnya dengan grafik fungsi sinus dan cosinus, grafiknya tidak membentuk bukit dan juga lembah. Hal ini disebabkan oleh nilai tangen yang tidak terdefinisi dalam besar sudut 90o dan 270o. Dengan demikian, dalam rentang 0o sampai dengan 360o terdapat dua buah asimtot. Sama halnya dengan fungsi sinus dan cosinus, nilai tertinggi fungsi y = Tan x yaitu 1 dan nilai terendahnya yaitu -1. Persamaan Trigonometri- Bentuk-Bentuk Persamaan dan Contoh-Contoh Soalnya Hallo sahabat Dipertemuan kali ini, kita akan membahas materi tentang Persamaan Trigonometri- Bentuk-Bentuk Persamaan dan Contoh-Contoh Soalnya. Dalam pembahasan ini terdapat beberapa bentuk-bentuk persamaan trigonometri yang mana pelajaran ini pasti keluar di materi di bangku sekolah. Untuk itu yuk mari disimak pelajaran ini semoga dapat membantu teman-teman memahami materi tentang Persamaan Trigonometri. Pengertian Persamaan Trigonometri Persamaan trigonometri ialah persamaan yang didalamnya memuat perbandingan – perbandingan trigonometri. Persamaan trigonometri tersebut terbagi dua bentuk, yakni berbentuk kalimat terbuka dan berbentuk identitas. Dalam hal menyelesaikan persamaan trigonometri didalam bntuk kalimat terbuka ini, berarti sama dengan menentukan nilai variabel yang terdapat didalam persamaan tersebut sehingga persamaan itu menjadi benar. Rumus Persamaan Trigonometri Ada tiga macam rumus periode yang dipakai untuk menyelesaikan persamaan trigonometri. Semua itu dibagi kedalam 3 bentuk, yaitu 1 sin x = sin α jadi x = α + dan x = 180 – α+ 2 cos x = cos α jadi x = α + dan x = – α+ 3 tan x = tan α jadi x = α+ dimana k merupakan bilangan bulat. Bentuk-Bentuk Persamaan Trigonometri dan Contoh Soalnya Bentuk Persamaan Trigonometri Fungsi Sinus Grafik fungsi sinus ini bersifat periodik yakni membentuk bukit dan lembah. Oleh karena itu, nilai fungsi sinus untuk satu besar sudut akan sama dengan nilai fungsi sinus untuk besaran sudut yang lain. Contohnya nilai fungsi yang sama nilainya dengan nilai fungsi , yaitu . Satu periode fungsi sinus dasar dimulai dari angka 0 nol dan kembali ke angka 0 nol lagi. Nilai tertinggi fungsi ialah 1 dan nilai terendahnya adalah min satu. Secara umum, persamaan trigonometri untuk fungsi sinus ini diberikan seperti dalam persamaan di bawah berikut ini Keterangan k= Bilangan Bulat Contoh soal untuk menyelesaikan persamaan trigonometri untuk fungsi sinus Tentukanlah himpunan pennyelesaian yang memenuhi persamaan di bawah berikut Penyelesaian Berdasarkan hasil persamaan akhir yang diperoleh di atas, maka dapat ditentukan hasil himpunan penyelesaiannya, yaitu Atau, Didapat dua persamaan akhir yaitu atau . Selanjutnya, akan diteliti pada beberapa nilai k untuk mendapatkan himpunan penyelesaiannya Untuk k = 0, Untuk k = 1, Untuk nilai k = 2 dan lebih akan menghasilkan nilai x yang lebih dari , oleh karena itu perhitungannya dicukupkan sampai nilia k = 1. Jadi, himpunan penyelesaian yang diperoleh yaitu Bentuk Persamaan Trigonometri Fungsi Cosinus Selanjutnya ialah menyelesaikan masalah persamaan trigonometri untuk fungsi cosinus. Grafik fungsi cosinus ialah grafik yang juga bersifat periodik seperti sinus, grafik tersebut membentuk bukit dan lembah. Bedanya hanya terletak pada awal mulainya. Pada satu periode pada fungsi sinus dasar dimulai dari angka 0 nol dan kembali ke angka 0 nol. Sedangkan pada satu periode fungsi cosinus dasar, dimulai dari angka 1 satu dan kembali ke angka 1 satu. Nilai tertinggi fungsi yaitu 1 dan nilai terendahnya yaitu . Nilai fungsi cosinus untuk satu besaran sudut akan sama dengan nilai fungsi cosinus untuk besaran sudut lain. Contoh nilai fungsi yang sama nilainya dengan nilai fungsi , yaitu . Secara umum, persamaan trigonometri untuk fungsi cosinus ini diberikan seperti persamaan di bawah berikut ini Contoh soal untuk menyelesaikan persamaan trigonometri untuk fungsi cosinus Tentukanlah himpunan penyelesaian dari persamaan di bawah sebagai berikut Pembahasannya Berdasarkan rumus umum persamaan trigonometri untuk fungsi cosinus, maka diperoleh dua persamaan berikut, yaitu Selanjutnya, akan diselidiki untuk beberapa nilai k nya Untuk nilai k = 0 Untuk nilai k = 1 atau lebih akan menghasilkan nilai x yang melebihi rentang yang telah diberikan. Sehingga, perhitungannya sampai di sini saja. Dan perolehan himpunan penyelesaian yang di cari, yaitu Bentuk Persamaan Trigonometri Fungsi Tangen Grafik fungsi tangen ini berbeda sendiri dengan grafik fungsi sinus dan cosinus, yakni grafiknya tidak membentuk bukit dan lembah. Hal ini dikarenakan nilai tangen yang tidak terdefinisi pada besaran sudut dan . Oleh sebab itu, dalam rentang sampai terdapat dua buah asimtot. Sama seperti fungsi sinus dan cosinus, nilai tertinggi fungsi ialah 1 dan nilai terendahnya adalah . Secara umum, persamaan trigonometri untuk fungsi tangen ini diberikan seperti persamaan di bawah berikut Contoh soal menyelesaikan persamaan trigonometri untuk fungsi tangen. Tentukanlah himpunan penyelesaian dari persamaan di bawah berikut ini Pembahasannya Selanjutnya akan ditentukan nilai x nya yang memenuhi untuk beberapa nilai k. Untuk nilai k = 0 Nilai x dari hasil perhitungan di atas ialah tidak memenuhi karena di luar rentang yang diberikan. Selanjutnya, akan diselidiki untuk nilai k nya = 1. Untuk nilai k = 2 atau lebih, akan menghasilkan berupa nilai x yang berada di luar rentang. Sehingga hanya terdapat satu himpunan penyelesaian untuk x ini, yaitu Baiklah sahabat pembahasan kita pada hari ini mengenai Persamaan Trigonometri lengkap, mulai dari pengertian sampai ke cara penentuannya. Semoga bermanfaat ya …
Himpunanpenyelesaian dari persamaan trigonometri cos 2x + sin x = 0 untuk 0° < x < 360° adalah . SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah
BankSoal UN SMA Persamaan Trigonometri. Kumpulan soal ujian nasional matematika SMA materi trigonometri, menyelesaikan persamaan trigonometri, rangkuman soal UN dari tahun 2008 hingga . Himpunan penyelesaian persamaan cos 2x° + 7 sin x° − 4 = 0 , 0 ≤ x ≤ 360 adalah.
Penyelesaiandari persamaan trigonometri adalah besarnya sudut yang diperoleh dimana sudut tersebut memenuhi persamaan yang ada. Himpunan semua peubah $ x \, $ dalam selang $ 0 \leq x \leq 2\pi \, $ yang memenuhi $ 2\cos ^2 x = 3\sin x + 3 $ ? Penyelesaian : *). Bentuk persamaannya tidak umum, sehingga harus diselesaikan dulu.
Himpunanpenyelesaian dari $ 2\cos ^2 x < 3\sin x + 3 \, $ pada interval $ 0 \leq x \leq 2\pi \, $ adalah ? Penyelesaian : artinya ada tak hingga banyaknya penyelesaian. Coba saja baca materi persamaan trigonometri. akar-akar yang kita ambil dari $ \sin x = \frac{1}{2} \, $ adalah akar-akar sekitar daerah $ 0^\circ \, $ sampai $ 360
. 75lmlqoq75.pages.dev/38875lmlqoq75.pages.dev/12575lmlqoq75.pages.dev/24475lmlqoq75.pages.dev/10275lmlqoq75.pages.dev/11075lmlqoq75.pages.dev/36275lmlqoq75.pages.dev/31275lmlqoq75.pages.dev/8375lmlqoq75.pages.dev/180
himpunan penyelesaian dari persamaan trigonometri